Ladda ner publikation: Working Paper no 327

Halvarsson, D. (2019). Asymmetric Double Pareto Distributions: Maximum Likelihood Estimation with Application to the Growth Rate Distribution of Firms. Working Paper no. 327. Stockholm: Ratio.

Abstract: 
This paper considers a flexible class of asymmetric double Pareto distributions (ADP) that allows for skewness and asymmetric heavy tails. The inference problem is examined for maximum likelihood. Consistency is proven for the general case when all parameters are unknown. After deriving the Fisher information matrix, asymptotic normality and efficiency are established for a restricted model with the location parameter known. The asymptotic properties of the estimators are then examined using Monte Carlo simulations. To assess its goodness of fit, the ADP is applied to companies’ growth rates, for which it is unequivocally favored over competing models.